产品别名 |
电源,电器设备,石油探险仪 |
面向地区 |
全国 |
品牌 |
高频率磁芯 |
电源相数 |
单相 |
频率特性 |
低频 |
铁心形式 |
非晶合金 |
外形结构 |
立式 |
防潮方式 |
密封式 |
冷却方式 |
油浸自冷式 |
冷却形式 |
蒸发冷却式(氟化物) |
绕组形式 |
自耦 |
铁心形状 |
品质 |
FERROXCUBE(飞磁) 和 TDK 全系列软磁铁氧体磁芯,包括:EE/EF/EI型,ETD/EC,EFD型,P/POT,EP,EQ,EER,TUB,PQ,RM,UU/UI/UR,及各种T型圆环(T,TC,TX,TN)等型号
高频变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的。按工作频率高低,可分为几个档次:10kHz- 50kHz、50kHz-100kHz、100kHz~500kHz、 开关电源一般是采用半桥式功率转换电路,电路中含有高频变压器以及三极管等。该电路工作时,三极管轮流导通,从而产生频率为100KH值得高频脉冲,然后通过高频变压器进行降压,后输出电压较低的交流电,具体的电压值则由高频变压器中各绕组线圈的匝数比来确定。一般会用到三个变压器,分别叫主变压器、驱动变压器以及辅助变压器,每个变压器都有各自的衡量规范以及作用,所以缺一不可。
高频变压器磁芯的选用原则
一般变压器磁芯所使用的是磁性材料,其主要成分是MnZn。但由于配方及生产工艺存在不同,因此磁性材料有很多牌号,每一种牌号的磁性材料的特性参数也有所不同,包括使用频率范围、初始导磁率、比损耗因数、比温度系数、饱和磁通密度、居里温度、电阻率以及密度等等。总的来说,磁芯有EI、EE、EC、U、UF 等这些型号。一般在选择时,我们应该根据使用时变压器的高工作频率来确定。
磁芯型号规则的选用,也是有一定原则的,具体的有:
电磁兼容性是指电子变压器既不产生对外界的电磁干扰,又能承受外界的电磁干扰。电磁干扰包括可听见的音频噪声和听不见的高频噪声。电子变压器产生电磁干扰的主要原因是磁芯的磁致伸缩。磁致伸缩系数大的软磁材料,产生的电磁干扰大。铁基非晶合金的磁致伸缩系数通常为大(27~30)×10-6,采取减少噪声抑制干扰的措施。高磁导Ni50坡莫合金的磁致伸缩系数为25×10-6,锰锌铁氧体的磁致伸缩系数为21×10-6.以上这3种软磁材料属于容易产生电磁干扰的材料,在应用中要注意.3%取向硅钢的磁致伸缩系数为(1~3)×10-6,微晶纳米晶合金的磁致伸缩系数为(0.5~2)×10-6.这2种软磁材料属于比较容易产生电磁干扰的材料.6.5%硅钢的磁致伸缩系数为0.1×10-6,高磁导Ni80坡莫合金的磁致伸缩系数为(0.1~0.5)×10-6,钴基非晶合金的磁致伸缩系数为0.1×10-6以下。这3种软磁材料属于不太容易产生电磁干扰的材料。由磁致伸缩产生的电磁干扰的频率一般与电子变压器的工作频率相同。如果有低于或工作频率的电磁干扰,那是由其他原因产生的。
功率传送有2种方式。种是变压器传送方式,即外加在变压器原绕组上的交变电压,在磁芯中产生磁通变化,使副绕组感应电压,加在负载上,从而使电功率从原边传送到副边。传送功率的大小决定于感应电压,也就是决定于单位时间内的磁通密度变量ΔB.ΔB与磁导率无关,而与饱和磁通密度Bs和剩余磁通密度Br有关。从饱和磁通密度来看,各种软磁材料的Bs从大到小的顺序为:铁钴合金为2.3~2.4T,硅钢为1.75~2.2T,铁基非晶合金为1.25~1.75T,铁基微晶纳米晶合金为1.1~1.5T,铁硅铝合金为1.0~1.6T,高磁导铁镍坡莫合金为0.8~1.6T,钴基非晶合金为0.5~1.4T,铁铝合金为0.7~1.3T,铁镍基非晶合金为0.4~0.7T,锰锌铁氧体为0.3~0.7T.作为电子变压器的磁芯用材料,硅钢和铁基非晶合金占优势,而锰锌铁氧体处于劣势。
功率传送的二种是电感器传送方式,即输入给电感器绕组的电能,使磁芯激磁,变为磁能储存起来,然后通过去磁变成电能释放给负载。传送功率的大小决定于电感器磁芯的储能,也就是决定于电感器的电感量。电感量不直接与饱和磁通密度有关,而与磁导率有关,磁导率高,电感量大,储能多,传送功率大。各种软磁材料的磁导率从大到小顺序为:Ni80坡莫合金为(1.2~3)×106,钴基非晶合金为(1~1.5)×106,铁基微晶纳米晶合金为(5~8)×105,铁基非晶合金为(2~5)×105,Ni50坡莫合金为(1~3)×105,硅钢为(2~9)×104,锰锌铁氧体为(1~3)×104.作为电感器的磁芯用材料,Ni80坡莫合金、钴基非晶合金、铁基微晶纳米晶合金占优势,硅钢和锰锌铁氧体处于劣势。
采用SHS法合成MnZn铁氧体材料的研究,值得注意。用这种方法的试验结果表明,可以大大降低铁氧体的制造能耗和成本。国内已有试验成功的报导。
非晶和纳米晶合金
铁基非晶合金在工频和中频领域,正在和硅钢竞争。铁基非晶合金和硅钢相比,有以下优缺点。
1)铁基非晶合金的饱和磁通密度Bs比硅钢低,但是,在同样的Bm下,铁基非晶合金的损耗比0.23mm厚的3%硅钢小。一般人认为损耗小的原因是铁基非晶合金带材厚度薄,电阻率高。这只是一个方面,更主要的原因是铁基非晶合金是非晶态,原子排列是随机的,不存在原子定向排列产生的磁晶各向异性,也不存在产生局部变形和成分偏移的晶粒边界。因此,妨碍畴壁运动和磁矩转动的能量壁垒非常小,具有的软磁性,所以磁导率高,矫顽力小,损耗低。
2)铁基非晶合金磁芯填充系数为0.84~0.86,
与硅钢填充系数0.90~0.95相比,同样重量的铁基非晶合金磁芯体积比硅钢磁芯大。
3)铁基非晶合金磁芯的工作磁通密度为
1.35T~1.40T,硅钢为1.6T~1.7T.铁基非晶合金工频变压器的重量是硅钢工频变压器的重量的130%左右。但是,即使重量重,对同样容量的工频变压器,磁芯采用铁基非晶合金的损耗,比采用硅钢的要低70%~80%.
4)假定工频变压器的负载损耗(铜损)都一样,负载率也都是50%.那么,要使硅钢工频变压
器的铁损和铁基非晶合金工频变压器的一样,则硅钢变压器的重量是铁基非晶合金变压器的18倍。因此,国内一般人所认同的抛开变压器的损耗水平,笼统地谈论铁基非晶合金工频变压器的重量、成本和价格,是硅钢工频变压器的130%~150%,并不符合市场要求的性能价格比原则。国外提出两种比较的方法,一种是在同样损耗的条件下,求出两种工频变压器所用的铜铁材料重量和价格,进行比较。另一种方法是对铁基非晶合金工频变压器的损耗降低瓦数,折合成货币进行补偿。每瓦空载损耗折合成5~11美元,相当于人民币42~92元。每瓦负载损耗折合成0.7~1.0美元,相当于人民币6~8.3元。例如一个50Hz,5kVA单相变压器用硅钢磁芯,报价为1700元/台;空载损耗28W,按60元人民币/W计,为1680元;负载损耗110W,按8元人民币/W计,为880元;则,总的评估价为4260元/台。用铁基非晶合金磁芯,报价为2500元/台;空载损耗6W,折合成人民币360元;负载损耗110W,折合成人民币880元,总的评估价为3740元/台。如果不考虑损耗,单计算报价,5kVA铁基非晶合金工频变压器为硅钢工频变压器的147%.如果考虑损耗,总的评估价为89%.
5)现在测试工频电源变压器磁芯材料损耗,是在畸变小于2%的正弦波电压下进行的。而实际的工频电网畸变为5%.在这种情况下,铁基非晶合金损耗增加到106%,硅钢损耗增加到123%.如果在高次谐波大,畸变为75%的条件下(例如工频整流变压器),铁基非晶合金损耗增加到160%,硅钢损耗增加到300%以上。说明铁基非晶合金抗电源波形畸变能力比硅钢强。
6)铁基非晶合金的磁致伸缩系数大,是硅钢的3~5倍。因此,铁基非晶合金工频变压器的噪声为硅钢工频变压器噪声的120%,要大3~5dB.
7)现行市场上,铁基非晶合金带材价格是0.23mm3%取向硅钢的150%,是0.15mm3%取向硅钢(经过特殊处理)的40%左右。
8)铁基非晶合金退火温度比硅钢低,消耗能量小,而且铁基非晶合金磁芯一般由生产厂制造。硅钢磁芯一般由变压器生产厂制造。
根据以上比较,只要达到一定生产规模,铁基非晶合金在工频范围内的电子变压器中将取代部分硅钢市场。在400Hz至10kHz中频范围内,即使有新的硅钢品种出现,铁基非晶合金仍将会取代大部分0.15mm以下厚度的硅钢市场。
值得注意的是,日本正在大力开发FeMB系非晶合金和纳米晶合金,其Bs可达1.7~1.8T,而且损耗为现有FeSiB系非晶合金的50%以下,如果用于工频电子变压器,工作磁通密度达到1.5T以上,而损耗只有硅钢工频变压器的10%~15%,将是硅钢工频变压器的更有力的竞争者。日本预计在2005年就可以将FeMB系非晶合金工频变压器试制成功,并投入生产。
非晶纳米晶合金在中高频领域中,正在和软磁铁氧体竞争。在10kHz至50kHz电子变压器中,铁基纳米晶合金的工作磁通密度可达0.5T,损耗P0.5/20k≤25W/kg,因而,在大功率电子变压器中有明显的优势。在50kHz至100kHz电子变压器中,铁基纳米晶合金损耗P0.2/100k为30~75W/kg,
铁基非晶合金P0.2/100k为30W/kg,可以取代部分铁氧体市场。
非晶纳米晶合金经过20多年的推广应用,已经证明其具有下述优点:
1)不存在时效稳定性问题,纳米晶合金在200℃以下,钴基非晶合金在100℃以下,经过长期使用,性能无显著变化;
2)温度稳定性比软磁铁氧体好,在-55℃至150℃范围内,磁性能变化5%~10%,而且可逆;
3)耐冲击振动,随电源整机在30g下的振动试验中,均未发生过性能恶化问题;
4)铁基非晶合金脆性大大改善,带材平整度良好,可以剪切加工,也可以制成搭接式卷绕磁芯,经过5次弯折或拆卸,性能无显著变化。
软磁复合材料
经过争论,现在对磁粉芯等已经取得了一致认识,即认为它属于软磁复合材料。软磁复合材料是将磁性微粒均匀分散在非磁性物中形成的。与传统的金属软磁合金和铁氧体材料相比,它有很多特的优点:磁性金属粒子分散在非导体物件中,可以减少高频涡流损耗,提高应用频率;既可以采取热压法加工成粉芯,也可以利用现在的塑料工程技术,注塑制造成复杂形状的磁体;具有密度小,重量轻,生产,成本低,产品重复性和一致性好等优点。缺点是由于磁性粒子之间被非磁性体分开,磁路隔断,磁导率现在一般在100以内。不过,采用纳米技术和其他措施,国外已有磁导率超过1000的报导,大可达6000.
软磁复合材料的磁导率受到很多因素的影响,如磁性粒子的成分,粒子的形状,尺寸,填充密度等。因此,根据工作频率可以进行调整。
磁粉芯是软磁复合材料的典型例子。现在已在20kHz至100kHz甚至1MHz的电感器中取代了部分软磁铁氧体。例如铁硅铝磁粉芯,硅含量为8.8%,铝为5.76%,剩余全为铁。粒度为90~45μm,45~32μm和32~30μm.用硅树脂作粘接剂,1%左右硬脂酸作润滑剂,在2t/cm2压力下,制成13×8×5的环形磁芯,在氢气中用673°K,773°K,873°K退火,使磁导率达到100,300,600.在100kHz下损耗低,已经代替软磁铁氧体和MPP磁粉芯用于电感器中。
已经有人对大功率电源的电感器用软磁复合材料——磁粉芯进行了开发研究。在20kHz以下,磁导率基本不变。在1.0T下,磁导率为100左右.50Hz~20kHz损耗小,可制成100kg重量以上的大型的磁芯,而且在20kHz下音频范围,噪声比环形铁氧体磁芯降低10dB.可以在大功率电源中代替硅钢和软磁铁氧体。
有人用钴/二氧化硅(Co/SiO2)纳米复合软磁材料制作不同于薄膜的大尺寸磁芯。钴粒子平均尺寸为30μm,填充度40%至90%,经过搅拌后,退火形成Co/SiO2纳米复合粉,然后压制成环形磁芯。磁导率在300MHz以下,都可达到16.镍锌铁氧体的磁导率为12,而且在100MHz以后迅速下降。证明在高频和频下,软磁复合材料也可取代部分铁氧体市场。
新磁芯结构在电子变压器中的应用
搭接式卷绕磁芯
搭接式卷绕磁芯早用于非晶合金配电变压器。它既有卷绕磁芯优点,激磁电流小,空载损耗低,又可以打开装卸线圈,消除一般卷绕磁芯的缺点,不需要用绕线机绕制线圈,生产效率提高,线圈出现问题时也便于更换和维修。现有3%取向硅钢的厚度已减薄到0.23mm和0.27mm,用它们制造搭接式卷绕磁芯比非晶合金更容易。因此,搭接式卷绕磁芯有可能用于500VA以上的硅钢电源变压器,尤其是大容量整流电源和不停电电源中的硅钢电源变压器。
立体三角形磁芯
立体布置的三角形三相磁芯,现在正在国内风行。早出现立体三角形磁芯可追溯到20世纪30年代,但是,由于磁芯需要特殊剪切加工,线圈需要绕线机绕制,而未能推广应用。现在可以用计算机控制磁芯剪切加工,已经有绕线机绕线。国内有5—6家企业在申请立体三角形磁芯变压器的专利。立体布置的三角形三相磁芯与平面布置的三柱式三相磁芯相比,磁通分布均匀,不会出现局部饱和,激磁电流和磁通的对称性好。问题是各个柱的截面要形成接近圆形相当困难,绕组平均匝长增加,负载损耗也会增加。可用于30kVA以上的大型变压器。
正交形磁芯
把C型磁芯的一半旋转90°,再接合在一起,就形成正交形磁芯。可以用直流控制绕组控制正交形磁芯的电感。日本索尼公司已经用软磁铁氧体制成这种磁芯,叫SX形磁芯,并且已经用于各种电视机的开关电源,作为驱动变压器,控制它的电感,使电路出现电压谐振或者电流谐振,而实现软开关条件。日本东北大学和东北电力公司已经用硅钢制成这种磁芯,用于功率补偿器和移相器,控制电力系统的有功和无功功率。与晶闸管功率补偿器和移相器相比,具有高次谐波少,电磁干扰小,控制电路简单等特点。
磁性液体磁芯
有人曾设想过,用注塑机加工变压器磁芯,可以避免硅钢磁芯冲片,热处理,叠片,组装等多道工序。现在正在开发磁性液体磁芯可以实现这种设想,用工程塑料做成磁芯外壳,中间注入磁性液体,表面再用磁性片封住。这样,大量生产的中小型电源变压器的加工效率可以显著提高,使成本降低,与叠片式硅钢磁芯相比具有明显的优势。
电子变压器在电源技术中起着重要作用。电源技术要求电子变压器能适应外界使用条件,减少电磁干扰;完成功率传送,电压变换,绝缘隔离和纹波抑制等功能;提率,降低成本。新软磁材料和新磁芯结构在电子变压器中的应用,不但推动了电子变压器的发展,而且也推动了电源技术的发展。各种新的动态值得注意。
最近来访记录