关键词 |
益平坦滤波器GFF |
面向地区 |
全国 |
安科瑞有源电力滤波器在通信行业中的应用 安科瑞鲍静君
摘要:随着通信行业的迅猛发展,大量使用UPS、开关电源及变频设备等非线性负载,在使用过程中会产生大量的谐波电流,给配电系统带来严重的污染,不仅会影响配电系统安全运行,还会引起其他设备的不稳定,为此,安科瑞有源电力滤波器为通信行业电能治理,为电力系统保驾。
1、通信行业谐波源分析
(1)UPS不间断电源
目前移动通信机房大量使用的UPS多为三相全控桥6脉冲可控硅整流方式,单套容量大,其谐波电流畸变率大25%~35%之间,主要谐波为5、7、11、13次谐波。
(2)开关电源
开关电源是移动通信机房应用多的设备,其特点是单元容量比较小,输入端采用整流电路,致使电流波形产生畸变,其谐波电流畸变率大30%~60%之间,不同的开关电源谐波含量差别比较大。
(3)计算机设备
电路中的开关器件及感性负载工作于高频开关状态而产生脉冲,计算机设备产生谐波以3次、5次和7次为主。
2、通信行业的电能质量问题及危害
移动通信设备对电能质量要求,移动通信机房作为移动公司的核心区域,配电系统和用电设备安全可靠运行,一旦发生电气事故造成停电或设备故障造成停机,造成的经济损失和社会影响很难估量。
非线性设备在使用过程中会产生大量的谐波,导致电压、电流波形发生畸变,严重影响机房供电安全,诸如电缆发热、备用柴油发电机组无常投切、IT设备寿命降低、控制设备工作异常、保护开关误动作、无功补偿装置不能正常投切等。
3. 通信行业谐波治理解决方案
针对于以上通信行业谐波污染情况,经测试及分析,建议加装有源电力滤波器,经过实际应用效果证实其性能,避免由谐波给数据机房带来的严重影响,供电系统稳定性、安全性。
3.1 ANAPF有源电力滤波器在数据机房的应用
3.1.1 项目背景
常熟智慧城市是一个市民卡信息中心,其中包括大型数据机房,对电能质量要求非常高;为了提高供电可靠度,采用大量的UPS作为设备电源,机房内还包含空调设备、照明设备等。此类电力电子设备皆属于非线性负载,在使用过程中会产生大量谐波并注入系统中,主要以5次、7次为主;如果不进行谐波治理,对电网造成严重的污染,也影响机房中其他敏感设备,比如导致通信数据错误,甚至瘫痪、中断,降低了配电系统的安全性、可靠性。
3.1.2治理方案
根据以往测量经验进行谐波分析与估算,谐波主要由UPS和一些非线性直流电源产生,供电系统由2台800kVA变压器及其一台800kW发电机组成,采用集中治理方案,在每台变压器下加装300A有源电力滤波器,型号为 ANAPF300-380/BGL,来自动跟踪补偿负载产生的谐波电流,整个系统安全可靠运行。
3.1.3治理效果
图3-1治理前电流波形和各次谐波柱状图
图3-2治理后电流波形和各次谐波柱状图
由上图可以看出,治理前,N线电流较大,3次、5次、7次等谐波频次含量较大;治理后,N线电流明显降低、各次谐波电流得到有效抑制,提高了供电系统的稳定性,消除了谐波对通信系统影响的危害,收到了良好的运行效果。
3.1.4安装现场
3.2安科瑞有源电力滤波器介绍
3.2.1 基本原理
ANAPF系列有源电力滤波器并联在含谐波负载的低压配电系统中,能够对动态变化的谐波电流进行快速实时的跟踪和补偿。其原理为:ANAPF系列有源电力滤波器通过CT采集系统谐波电流,经控制器快速计算并提取各次谐波电流的含量,产生谐波电流指令,通过功率执行器件产生与谐波电流幅值相等方向相反的补偿电流,并注入电力系统中,从而抵消非线性负载所产生的谐波电流。
图3-3 ANAPF有源电力滤波器原理图
3.2.2主要技术参数
3.2.3 产品特点
● DSP+FPGA全数字控制方式,具有极快的响应时间,的主电路拓扑和控制算法,精度更高、运行更稳定;
● 一机多能,既可补谐波,又可兼补无功,可对2~51次谐波进行全补偿或特定次谐波进行补偿;
● 具有完善的桥臂过流保护、直流过压保护、装置过温保护功能;
● 模块化设计,体积小,安装便利,方便扩容,可满足不同工况的需求;
● 受电网阻抗的影响不大,没有与电网阻抗发生谐振隐患;
● 输出端加装滤波装置,降低高频纹波对电力系统的影响;
● 拥有自主技术。
4、结论
本文分析了通信行业中谐波存在源、谐波特性以及危害,介绍了ANAPF低压有源滤波器的特点以及技术参数,并通过某城市数据机房的应用案例,对析了有源滤波器投入前后的谐波治理,可以满足通信行业需求,为其电力系统保驾,提升电能质量,改善用电环境,提高设备的使用寿命和性能。
有源滤波与无源滤波的区别
目前,谐波治理方式主要有两种:有源滤波方式、无源滤波方式。
无源滤波器
采用电力滤波装置就近吸收谐波源所产生的谐波电流,是谐波污染的措施。通常采用由电力电容器、电抗器和电阻器适当组合而成的无源滤波装置进行滤波。
无源滤波器由电容电抗和电阻组成,根据电容电阻固有的阻抗特性,对某一特定频率的谐波呈低阻抗,为负载谐波电流提供较低的阻抗通道,与电网阻抗形成分流的关系,使大部分该频率的谐波流入滤波器,而不流入电网。
无源滤波器具有投资少、、结构简单、运行可靠及维护方便等优点,因此无源滤波器仍然是目前广泛采用的谐波及无功补偿的手段。不过,由于无源滤波器是通过在系统中为谐波提供一条并联的低阻通路,以起到滤波作用,其滤波特性由系统和滤波器的阻抗比所决定,因而存在以下缺点:
1)滤波器一旦制成,性能参数难以变动,滤波特性受系统参数的影响较大。当系统参数改变,则滤波装置有可能失效甚至会引起谐振。因此当电网谐波阻抗降低时,滤波效果将随之降低;当电网参数不变而谐波电流增加时,可能使滤波器过载。另一方面即使电网参数和谐波电流都不变,但由于温度变化,滤波器部件老化和其它因素都会影响滤波器性能而降低效率。此外滤波器的电抗电容值通常也会有容差即偏离其标准值±10%而增加了失谐度,也会降低滤波效率;
2)只能消除特定的几次谐波,而对某些次谐波会产生放大作用。当电网短路容量大(即电源阻抗小)时,则要求滤波器阻抗还要更小,即要求滤波器是调谐(锐调谐),但由于部件性能的容差和变动使滤波器的设计有很大的困难;
3)谐波电流时,滤波器负担随之加重,可能造成滤波器过载;
4)材料消耗多,体积大。
无源电力滤波器组成简单,成本也较低。但由于无源电力滤波器容受系统阻抗影响,很难达到预期要求。而且由于无源元件本身的特性,会与电网阻抗一起作用引起谐振,谐振将引起某次谐波放大数倍,这对于供电系统来说是非常危险的。电网阻抗一般较为稳定,但难免会波动,这样不但会影响滤波效果,而且可能引起谐振。另一方面,由于滤波支路表现出电容特性(对于滤波支路,容抗远远大于感抗),所以在电压作用下,会产生的无功电流,这样就存在一个问题,在使用无源电力滤波器同时还会进行无功补偿,如果系统原有的无功含量不大(小于电容可以提供的无功),那么就会出现无功功率过补,功率因数可能因此下降,而且会提升电网电压,这对某些设备也是不安全的。
有源滤波器
由于无源滤波器具有以上缺点,随着电力电子技术的不断发展,人们将滤波研究方向逐步转向有源滤波器。与无源滤波器相比,有源电力滤波器具有高度可控性和快速响应性,不仅能补偿各次谐波,还可闪变、补偿无功,有一机多能的特点,其具体特点如下:
滤波特性不受系统阻抗的影响,可消除与系统阻抗发生谐振的危险;
具有自适应功能,可自动跟踪补偿变化着的谐波。
尽管有源电力滤波器有着无源滤波器所不具备的技术优势,但目前要想在电力系统中完全取代无源滤波器还不太现实。这是因为与无源滤波器相比较,有源电力滤波器的成本较高,这一点是限制其推广使用的关键。
通过检测被补偿对象的电流瞬时值,经指令电流运算电路得出谐波补偿电流的指令信号,控制变流器产生所需要的补偿电流。补偿电流与负载电流中要补偿的谐波成份及无功电流相抵消,终获得期望的电源电流。
电网侧的谐波电流可以写为: 只要控制有源电力滤波器的输出电流,使其满足,即可使电网侧的谐波电流。
APF滤波模块技术要求
(1)模块开关频率:10-20kHz;自身损耗:≤2%,效率98%;(需要提供第三方检验机构出具的带有CMA,CAL,ilac-MRA,CNAS等认证的型式试验报告。)
(2)全响应时间≤7ms;(需要提供第三方检验机构出具的带有CMA,CAL,ilac-MRA,CNAS等认证的型式试验报告。)
(3)总谐波补偿率:≥90%(需要提供第三方检验机构出具的带有CMA,CAL,ilac-MRA,CNAS等认证的型式试验报告。)
(4)有源电力滤波器采用模块化设计,支持多机并联扩容,并联容量不受限制,如果一台因故障退出运行,其他有源滤波器仍能正常工作实现滤波功能;
(5) 有源电力滤波器要求采用英飞凌、富士、塞米控等国际、技术成熟的IGBT模组,性能稳定、质量可靠;如为纯进口产品,请提供进口产品相关;
(6)采用“光纤环网”技术,同步性好、响应时间快、补偿率高;
(7)取得国家检验机构颁发的带有CMA,CAL,ilac-MRA,CNAS等认证的型式试验报和欧洲机构颁发的CE。
(8)有源滤波器需原厂生产,提供实用新型的知识产品,不接受贴牌产品,厂家有自己研发中心和生产工厂及生产线,可供考察,如有偏差,取消投标。有源滤波器生产商需提供至少有不少于100万的业绩合同两个,提供200万以上合同至少一个。
(9)控制算法:同时支持快速傅里叶(FFT)和瞬时无功两种算法。闭环谐振控制算法,针对性强,控制精度高;
(10)有源电力滤波器同时支持谐波补偿、无功补偿及三相不平衡补偿三种功能;
(11)滤波器在滤波的同时须避免过补偿,即有源滤波器可以做到只滤波而不产生无功功率,完全避免过补偿,也可以通过设定目标功率因数,将滤波后剩余的能量用于无功补偿。当系统负载的谐波量大于滤波器补偿能力时,滤波器仍应根据本体容量输出额定电流,继续滤波,不发生超载或导致设备损坏而退出运行。
(12)有源滤波器自身的高频载波不能回馈到电网,对其它系统和设备没有干扰。
(13)有源电力滤波器具有稳定性保护功能,当系统处于不稳定状态时,设备能自动与系统脱开;有源电力滤波器具备快速、完全的故障自检功能,同时自动采取相对应的操作;具备完整的保护功能,包括电网过欠压、电网错缺相、IGBT异常、频率异常、装置过流、装置过温、直流母线过欠压、过载自动限流等保护,确保装置安全无故障运行。
地方规定摘录
《上海轨道交通无功补偿及谐波支路意见》
2007年4月上海申通地铁集团有限公司发布的《上海轨道交通无功补偿及谐波支路意见》中明确指出,设计方案中“取消传统的无功补偿设计方案”,“新建线路的设计中应统一采用:串接电抗器的无功补偿装置(失谐无功补偿装置)与有源滤波器并联使用的设计方案”。
有源滤波器工作原理
基本原理:从补偿对象中检测出谐波电流的频谱和幅值,由补偿装置产生一个与该谐波电流等幅、反相的补偿电流, 以抵消原系统中谐波源所产生的谐波,从而使电网电流只含有基波分量。其核心部分是谐波电流发生器与数字控制系统,其工作靠数字信号处理(DSP)技术控制快速绝缘双极晶体管(IGBT)来完成。
步:测量谐波源侧谐波电流
第二步:向电网注入反相等幅谐波电流
第三步:谐波电流被抵消,电源只提供基波电流
有源电力滤波器技术特点
专为适应高可靠性,高利用率供电系统要求设计的模块组合式有源滤波装置:
标准模块化结构,灵活的扩容配置(同一柜内,只需增加控制模块和功率模块即可扩展至300A;支持多台装置并联运行,且不限于等容量扩容);
高可靠性:属于全数字有源滤波器,冗余设计,一个模块发生故障,只是容量降低,不会影响其它模块的正常工作;
工作模式:具有全滤波、全无功补偿、滤波+无功补偿等三种工作模式;
功率因数调节能力:具备容性无功吸收和容性无功补偿两种功能;
7寸全触摸液晶显示屏:便于观察所有的参数及波形。