PCB机制造服务多层电路板光模块pcb 免费发布多层电路板信息

光模块pcb

更新时间:2024-05-13 04:27:14 编号:f21tq8ulvcc5df
分享
管理
举报
  • 面议

  • PCB多层线路板

  • 6年

陈生

18938919530 1036958619

微信在线

产品详情

关键词
PCB多层线路板
面向地区
全国

光模块pcb

浅析pcb线路板的热可靠性问题
一般情况下,pcb线路板板上的铜箔分布是非常复杂的,难以准确建模。因此,建模时需要简化布线的形状,尽量做出与实际线路板接近的ANSYS模型线路板板上的电子元件也可以应用简化建模来模拟,如MOS管、集成电路块等。


热分析

贴片加工中热分析可协助设计人员确定pcb线路板上部件的电气性能,帮助设计人员确定元件或线路板是否会因为高温而烧坏。简单的热分析只是计算线路板的平均温度,复杂的则要对含多个线路板的电子设备建立瞬态模型。热分析的准确程度终取决于线路板设计人员所提供的元件功耗的准确性。



在许多应用中重量和物理尺寸非常重要,如果元件的实际功耗很小,可能会导致设计的安全系数过高,从而使线路板的设计采用与实际不符或过于保守的元件功耗值作为根据进行热分析。与之相反(同时也更为严重)的是热安全系数设计过低,也即元件实际运行时的温度比分析人员预测的要高,此类问题一般要通过加装散热装置或风扇对线路板进行冷却来解决。这些外接附件增加了成本,而且延长了**时间,在设计中加入风扇还会给可靠性带来不稳定因素,因此线路板板主要采用主动式而不是被动式冷却方式(如自然对流、传导及辐射散热)。



线路板简化建模

建模前分析线路板中主要的发热器件有哪些,如MOS管和集成电路块等,这些元件在工作时将大部分损耗功率转化为热量。因此,建模时主要需要考虑这些器件。



此外,还要考虑线路板基板上,作为导线涂敷的铜箔。它们在设计中不但起到导电的作用,还起到传导热量的作用,其热导率和传热面积都比较大线路板板是电子电路不可缺少的组成部分,它的结构由环氧树脂基板和作为导线涂敷的铜箔组成。环氧树脂基板的厚度为4mm,铜箔的厚度为0.1mm。铜的导热率为400W/(m℃),而环氧树脂的导热率仅为0.276W/(m℃)。尽管所加的铜箔很薄很细,却对热量有强烈的引导作用,因而在建模中是不能忽略的。

PCB线路板调试技术之六类模块

在PCB抄板及设计工作中,我们常常要对电路板进行调试与测试,六类模块电路板的调试就是其中一种,为了能让大家更好的理解六类模块电路板的调试技术,我先给大家简单的介绍一下六类模块。六类模块的核心部件是线路板,其设计结构、制作工艺基本上就决定了产品的性能指标,六类模块执行的标准是 EIA/TIA 568B.2-1,当中为重要的参数是插入损耗、回波损耗、近端串扰等。

插入损耗 (Insert Loss):由于传输通道阻抗的存在,它会随着信号频率的增加而使信号的高频分量衰减加大,衰减不仅与信号频率有关,也与传输距离有关,随着长度的增加,信号衰减也会随着增加。回波损耗(Return Loss):由于产品中阻抗发生变化,就会产生局部震荡,致使信号反射,被反射到发送端的一部分能量会形成噪音,导致信号失真,降低传输性能。如全双工的千兆网,会将反射信号误认为是收到的信号而引起有用信号的波动,造成混乱,反射的能量越少,就意味着通道采用线路的阻抗一致性越好,传输信号越完整,在通道上的噪音就越小。回波损耗RL的计算公式:回波损耗=发射信号÷反射信号。
  

在设计中,阻抗的全线路一致性以及与100欧姆阻抗的六类线缆配合是解决回波损耗参数失效的有效手段。例如PCB线路的层间距离不均匀、传输线路铜导体截面变化、模块内的导体与六类线缆导体不匹配等,都会引起回波损耗参数变化。近端串扰(NEXT): NEXT是指在一对传输线路中,一对线对另一对线的信号耦合,即为当一条线对发送信号时,在另一条相邻的线对收到的信号。这种串扰信号主要是由于临近绕对通过电容或电感耦合过来的,通过补偿的办法,抵消、减弱其干扰信号,使其不能产生驻波是解决该参数失效的主要办法。

在模块试制阶段,用理论做指导,以计算机辅助设计为依据,就能很快的达到预期效果。在国内进行的六类模块PCB设计中,主要以线路对角补偿理论做依据,进行大量的试制工作,同样也可达到预期效果。模块与插头引起的信号外漏现象会发生相互间的信号干涉,为防止信号干涉现象,在平衡链路中导体进行扭绕,达到平衡传输的目的,扭绕结构会造成信号间的相位变化,也会增大线路上的信号衰减,这个结构称之为非屏蔽结构(UTP)。4对平衡双绞线中,每对线的绞距不同,线缆尾端使用模块化的连接件,形成连接件和接插件之间的相连,相互连接区内形成导体之间进行的平衡结构,即为六类系统的链路。在链路内产生了在平衡线路中所发生的信号干扰现象,即为串扰,解决串扰问题是进行高速通信用连接件制造的核心技术。
  

在接触端子之间产生接触损失会导致衰减、反射损失等现象,这种损失在高速信号传输时,会产生障碍和故障,解决这类问题是进行高速通信用连接件制造的核心技术。在模块与插头的连接线路中,插头内的每对连接端子是平衡线路,平衡线路中导体会产生信号外漏及阻抗损耗,阻碍通信的大因素就是信号外漏。可通过研究E场和H场解决此类问题或从研究反向衰减的方法中寻找解决方案,这是高速通信用连接件制造的核心技术。E场和H场平衡线路上所发生的信号干扰,即电磁场干扰,可通过E场和H场的分布进行描述。



电子通信线路测试的主要参数是扫频下进行的相关测量,在这个频率信号上附加语音或数据包进行传输,传输速度越高频率越快。用信号外漏的解决方法来解释产生问题的插座信号外漏现象,基本的方法是根据电感和电容所发生的信号外漏仿真图,在信号集中区域收集信号并进行返送。在设计中,耦合电容的设计是关键参数,与耦合线路的长度、线间距离、宽度、补偿线路布置等有关。考虑到六类系统采用4对线同时传输信号,必然会对其产生综合远端串绕,可通过分析,进行计算机仿真,设计出补偿线路。国内同行一般进行的六类模块试制过程主要是在确定主干回路后,在设计出补偿回路,进行大量的方案设计和样品制作,在补偿线路、PCB层间结构基本确定后,后续工作主要是通过工艺改进,从而提。

PCB线路板贴干膜常见问题及解决方法汇总

随着电子行业的不断发展,产品的不断升级,为了节省板子的空间,很多板子在设计的时候的线都已经非常小了,以前的湿膜已经不能满足现在的图形转移工艺了,现在一般小线都用干膜来生产,那么我们在贴膜过程中有哪些问题呢,下面小编来介绍一下。
  PCB线路板贴干膜常见问题及解决方法汇总
1、干膜与铜箔表面之间出现气泡
(1)不良问题:选择平整的铜箔,是无气泡的关键。

解决方法:增大PCB贴膜压力,板材传递要轻拿轻放。

(2)不良问题:热压辊表面不平,有凹坑和胶膜钻污。

解决方法:定期检查和保护热压辊表面的平整。

(3)不良问题:PCB贴膜温度过高,导致部分接触材料因温差而产生皱皮。

解决方法:降低PCB贴膜温度。

2、干膜在铜箔上贴不牢

(1)不良问题:在处理铜箔表面是没有进行合理的清洁,直接上手操作会留下油污或氧化层。

解决方法:应戴手套进行洗板。

(2)不良问题:干膜溶剂品质不达标或已过期。

解决方法:生产厂家应该选择干膜以及定期检查干膜保质期。

(3)不良问题:传送速度快,PCB贴膜温度低。

解决方法:改变PCB贴膜速度与PCB贴膜温度。

(4)不良问题:加工环境湿度过高,导致干膜粘结时间延长。

解决方法:保持生产环境相对湿度50%。

3、干膜起皱

(1)不良问题:干膜太黏,在操作过程中小心放板。

解决方法:一但出现碰触应该及时进行处理。

(2)不良问题:PCB贴膜前板子太热。

解决方法:板子预热温度不宜太高。

4、余胶

(1)不良问题:干膜质量差。

解决方法:更换干膜。

(2)不良问题:曝光时间太长。

解决方法:对所用的材料有一个了解进行合理的曝光时间。

(3)不良问题:显影液失效。

解决方法:换显影液。

什么是HDI线路板
一.什么是HDI板?
HDI板(High Density Interconnector),即高密度互连板,是使用微盲埋孔技术的一种线路分布密度比较高的电路板。HDI板有内层线路和外层线路,再利用钻孔、孔内金属化等工艺,使各层线路内部实现连结。
二.HDI板与普通pcb的区别
HDI板一般采用积层法制造,积层的次数越多,板件的技术档次越高。普通的HDI板基本上是1次积层,高阶HDI采用2次或以上的积层技术,同时采用叠孔、电镀填孔、激光直接打孔等PCB技术。当PCB的密度增加超过八层板后,以HDI来制造,其成本将较传统复杂的压合制程来得低。
HDI板的电性能和讯号正确性比传统PCB更高。此外,HDI板对于射频干扰、电磁波干扰、静电释放、热传导等具有更佳的改善。高密度集成(HDI)技术可以使终端产品设计更加小型化,同时满足电子性能和效率的更高标准。
HDI板使用盲孔电镀 再进行二次压合,分一阶、二阶、三阶、四阶、五阶等。一阶的比较简单,流程和工艺都好控制。二阶的主要问题,一是对位问题,二是打孔和镀铜问题。二阶的设计有多种,一种是各阶错开位置,需要连接次邻层时通过导线在中间层连通,做法相当于2个一阶HDI。第二种是,两个一阶的孔重叠,通过叠加方式实现二阶,加工也类似两个一阶,但有很多工艺要点要特别控制,也就是上面所提的。第三种是直接从外层打孔至第3层(或N-2层),工艺与前面有很多不同,打孔的难度也更大。对于三阶的以二阶类推即是。

在PCB打样中,HDI造价较高,故一般的PCB打样厂家都不愿意做。捷多邦可以做别人不愿意做的HDI盲埋PCB板。现阶段,捷多邦采用的HDI技术已突破高层数为20层;盲孔阶数1~4阶;小孔径0.076mm,工艺为激光钻孔.
三.HDI板的优势
这种PCB在突显优势的基础上发展迅速:
1.HDI技术有助于降低PCB成本;
2.HDI技术增加了线密度;
3.HDI技术有利于使用的包装;
4.HDI技术具有更好的电气性能和信号有效性;
5.HDI技术具有更好的可靠性;
6.HDI技术在散热方面更好;
7.HDI技术能够改善RFI(射频干扰)/EMI(电磁干扰)/ESD(静电放电);
8.HDI技术提高了设计效率;
四.HDI板的材料
对HDI PCB材料提出了一些新的要求,包括更好的尺寸稳定性,抗静电移动性和非胶粘剂。HDI PCB的典型材料是RCC(树脂涂层铜)。RCC有三种类型,即聚酰亚胺金属化薄膜,纯聚酰亚胺薄膜,流延聚酰亚胺薄膜。
RCC的优点包括:厚度小,重量轻,柔韧性和易燃性,兼容性特性阻抗和的尺寸稳定性。在HDI多层PCB的过程中,取代传统的粘接片和铜箔作为绝缘介质和导电层的作用,可以通过传统的抑制技术用芯片抑制RCC。然后使用非机械钻孔方法如激光,以便形成微通孔互连。
RCC推动PCB产品从SMT(表面贴装技术)到CSP的发生和发展(芯片级封装),从机械钻孔到激光钻孔,促进PCB微通孔的发展和进步,所有这些都成为RCC的HDI PCB材料。
在实际的PCB中在制造过程中,对于RCC的选择,通常有FR-4标准Tg 140C,FR-4高Tg 170C和FR-4和Rogers组合层压,现在大多使用。随着HDI技术的发展,HDI PCB材料满足更多要求,因此HDI PCB材料的主要趋势应该是:
1.使用无粘合剂的柔性材料的开发和应用;
2.介电层厚度小,偏差小;
3 .LPIC的发展;
4.介电常数越来越小;
5.介电损耗越来越小;
6.焊接稳定性高;
7.严格兼容CTE(热膨胀系数);
五.HDI板制造的应用技术
HDI PCB制造的难点在于微观通过制造,通过金属化和细线。
1.微通孔制造
微通孔制造一直是HDI PCB制造的核心问题。主要有两种钻井方法:
a.对于普通的通孔钻孔,机械钻孔始终是其率和低成本的佳选择。随着机械加工能力的发展,其在微通孔中的应用也在不断发展。
b.有两种类型的激光钻孔:光热消融和光化学消融。前者是指在高能量吸收激光之后加热操作材料以使其熔化并且通过形成的通孔蒸发掉的过程。后者指的是紫外区高能光子和激光长度超过400nm的结果。
有三种类型的激光系统应用于柔性和刚性板,即准分子激光,紫外激光钻孔,CO 2 激光。激光技术不仅适用于钻孔,也适用于切割和成型。甚至一些制造商也通过激光制造HDI。虽然激光钻孔设备成本高,但它们具有更高的精度,稳定的工艺和成熟的技术。激光技术的优势使其成为盲/埋通孔制造中常用的方法。如今,在HDI微通孔中,99%是通过激光钻孔获得的。
2.通过金属化
通孔金属化的大困难是电镀难以达到均匀。对于微通孔的深孔电镀技术,除了使用具有高分散能力的电镀液外,还应及时升级电镀装置上的镀液,这可以通过强力机械搅拌或振动,超声波搅拌,水平喷涂。此外,在电镀前增加通孔壁的湿度。
除了工艺的改进外,HDI的通孔金属化方法也看到了主要技术的改进:化学镀添加剂技术,直接电镀技术等。
3.细线
细线的实现包括传统的图像传输和激光直接成像。传统的图像转移与普通化学蚀刻形成线条的过程相同。
对于激光直接成像,不需要摄影胶片,而图像是通过激光直接在光敏膜上形成的。紫外波灯用于操作,使液体防腐解决方案能够满足高分辨率和简单操作的要求。不需要摄影胶片,以避免因薄膜缺陷造成的不良影响,可以直接连接CAD/CAM,缩短制造周期,使其适用于和多种生产。
六.结尾
硬件工程师刚接触多层PCB的时候,很容易看晕。动辄十层八层的,线路像蜘蛛网一样。
今天画了几张多层PCB电路板内部结构图,用立体图形展示各种叠层结构的PCB图内部架构。

图片高密度互联板的核心在过孔
多层PCB的线路加工,和单层双层没什么区别,大的不同在过孔的工艺上。
线路都是蚀刻出来的,过孔都是钻孔再镀铜出来的,这些做硬件开发的大家都懂,就不赘述了。
多层电路板,通常有通孔板、一阶板、二阶板、二阶叠孔板这几种。更高阶的如三阶板、任意层互联板平时用的非常少,价格贼贵,先不多讨论。
一般情况下,8位单片机产品用2层通孔板;32位单片机级别的智能硬件,使用4层-6层通孔板;Linux和Android级别的智能硬件,使用6层通孔至8一阶HDI板;智能手机这样的紧凑产品,一般用8层一阶到10层2阶电路板。

图片
8层2阶叠孔,高通骁龙624

只有一种过孔,从层打到后一层。不管是外部的线路还是内部的线路,孔都是打穿的,叫做通孔板。

图片

通孔板和层数没关系,平时大家用的2层的都是通孔板,而很多交换机和电路板,做20层,还是通孔的。
用钻头把电路板钻穿,然后在孔里镀铜,形成通路。
这里要注意,通孔内径通常有0.2mm、0.25mm和0.3mm,但一般0.2mm的要比0.3mm的贵不少。因为钻头太细容易断,钻得也慢一些。多耗费的时间和钻头的费用,就体现在电路板价格上升上了。
高密度板的激光孔
图片

这张图是6层1阶HDI板的叠层结构图,表面两层都是激光孔,0.1mm内径。内层是机械孔,相当于一个4层通孔板,外面再覆盖2层。
激光只能打穿玻璃纤维的板材,不能打穿金属的铜。所以外表面打孔不会影响到内部的其他线路。
激光打了孔之后,再去镀铜,就形成了激光过孔。
2阶HDI板 两层激光孔
图片

这张图是一个6层2阶错孔HDI板。平时大家用6层2阶的少,大多是8层2阶起。这里更多层数,跟6层是一样的道理。
所谓2阶,就是有2层激光孔。
所谓错孔,就是两层激光孔是错开的。
为什么要错开呢?因为镀铜镀不满,孔里面是空的,所以不能直接在上面再打孔,要错开一定的距离,再打上一层的空。
6层二阶=4层1阶外面再加2层。
8层二阶=6层1阶外面再加2层。
叠孔板 工艺复杂价格更高
图片

错孔板的两层激光孔重叠在一起。线路会更紧凑。
需要把内层激光孔电镀填平,然后再做外层激光孔。价格比错孔更贵一些。
超贵的任意层互联板 多层激光叠孔
就是每一层都是激光孔,每一层都可以连接在一起。想怎么走线就怎么走线,想怎么打孔就怎么打孔。

PCB多层板表面处理方式分类:
1.热风整平涂布在PCB表面的熔融锡铅焊料和加热压缩空气流平(吹气平整)过程。使其形成抗铜氧化涂层,可提供良好的可焊性。热风焊料和铜在结合处形成铜 - 锡金属化合物,其厚度约为1~2mil;


2.有机抗氧化(OSP)通过化学方法在清洁的裸铜表面上生长一层有机涂层。这种PCB多层板薄膜具有抗氧化,耐热冲击,防潮,以保护铜表面在正常环境下不再生锈(氧化或硫化等);同时,在随后的焊接温度下,焊接用焊剂很容易快速去除;

3.镍金化学在铜表面,涂有厚实,良好的镍金合金电性能,可以保护PCB多层板。很长一段时间不像OSP,它只用作防锈层,它可以用于长期使用PCB并获得良好的电能。此外,它还具有其他表面处理工艺所不具备的环境耐受性;

4.化学镀银沉积在OSP与化学镀镍/镀金之间,PCB多层板工艺简单快速。暴露在炎热,潮湿和污染的环境中仍然提供良好的电气性能和良好的可焊性,但失去光泽。由于银层下没有镍,沉淀的银不具有化学镀镍/浸金的所有良好的物理强度;

5.在PCB多层板表面导体上镀镍金,镀一层镍然后镀一层金,镀镍主要是为了防止金与铜之间的扩散。有两种类型的镀镍金:软金(,这意味着它看起来不亮)和硬金(光滑,坚硬,耐磨,钴和其他元素,表面看起来更亮)。软金主要用于芯片包装金线;硬金主要用于非焊接电气互连。

6.PCB混合表面处理技术选择两种或两种以上表面处理方法进行表面处理,常见的形式有:镍金防氧化,镀镍金沉淀镍金,电镀镍金热风整平,常见形式有:镍金防 - 氧化,镀镍金沉淀镍金,电镀镍金热风整平,重镍和金热风平整。尽管PCB多层板表面处理过程的变化并不显着,并且似乎有些牵强,但应该注意的是,长期缓慢的变化将导致的变化。随着对环境保护的需求不断增加,PCB的表面处理工艺必将在未来发生变化。

PCB行业全景解析
印制电路板(PrintedCircuitBoard,简称“PCB”),是承载电子元器件并连接电路的桥梁,指在通用基材上按预定设计形成点间连接及印制元件的印制板,其主要功能是使各种电子零组件形成预定电路的连接,起传输作用。

PCB作为电子产品的关键元器件几乎应用于所有的电子产品,是现代电子信息产品中不可或缺的电子元器件,被誉为“电子产品之母”。
PCB产品分类


PCB的产品种类众多,可以按照产品的导电层数、弯曲韧性、组装方式、基材、特殊功能等多种方式分类,但在实际中,往往根据PCB各细分行业的产值大小混合分类为:单面板、双面板、多层板、HDI板、封装载板、挠性板、刚挠结合板和特殊板。

PCB封装基板分类可分为:存储芯片封装基板(eMMC)、微机电系统封装基板(MEMS)、射频模块封装基板(RF)、处理器芯片封装基板及高速通信封装基板。

封装基板是Substrate(简称SUB)。基板可为芯片提供电连接、保护、支撑、散热、组装等功效,以实现多引脚化,缩小封装产品体积、改善电性能及散热性、密度或多芯片模块化的目的。

按基材柔软性划分,PCB可分为刚性印制电路板、挠性(柔性)印制电路板(FPC)和刚挠结合印制电路板。

FPC以软性铜箔基材(FCCL)为原材料制成,具有配线密度高、轻薄、可弯曲、可立体组装的优点,适用于小型化、轻量化和移动要求的电子产品。

印刷电路板主要由金属导体箔、胶粘剂和绝缘基板三种材料组合而成,不同的PCB,其绝缘基板表面的导体涂层数可能不同。

根据导电涂层数,可分为单面板、双面板、多层板。其中,多层板又可分为中低层板和高层板。常见的多层板一般为4层板或6层板,复杂的多层板可达几十层。

PCB行业产业链


中国的电子产业链日趋完善、规模大、配套能力强,而PCB产业在整个电子产业链中起到承上启下的关键作用。

PCB是每个电子产品承载的系统合集,核心的基材是覆铜板,上游原材料主要包括铜箔、玻璃纤维及合成树脂。

从成本来看,覆铜板占整个PCB制造的30%-40%左右,铜箔是制造覆铜板的主要原材料,成本占覆铜板的30%(薄板)和50%(厚板)。

下游应用比较广泛,其中通信、汽车电子和消费电子三大领域占比合计60%,5G基站的建设加速将拉动PCB产业链的快速发展。

覆铜板是核心基材图片

覆铜板(CCL)的制造过程是将增强材料浸以有机树脂,经干燥加工形成半固化片。将数张半固化片叠合在一起的坯料,一面或两面覆以铜箔,经热压而成的一种板状材料。

从成本来看,覆铜板占整个PCB制造的30%左右,覆铜板的主要原材料为玻璃纤维布、木浆纸、铜箔、环氧树脂等材料,其中铜箔作为制造覆铜板的主要原材料,占80%的物料比重包括30%(薄板)和50%(厚板)。

各个品种的覆铜板之所以在性能上的不同,主要是表现在它所使用的纤维增强材料和树脂上的差异。生产PCB所需的主要原材料包括覆铜板、半固化片、铜箔、氰化金钾、铜球和油墨等,覆铜板是为主要的原材料。

PCB行业增长态势稳健


PCB广泛的运用途径将有力支撑未来电子纱需求。2019年PCB产值约为650亿美元,中国PCB市场较为稳定,2019年中国PCB市场产值近350亿美元,中国地区是增长快的区域,占产值的一半之多,未来将持续增长。

PCB产值地区分布,美洲、欧洲、日本PCB产值在的占比不断下降,亚洲其他地区(除日本)的PCB产业产值规模则迅速提高,其中中国大陆的占比提升迅速,是PCB产业转移的中心。

PCB市场格局


PCB市场较为分散,集中度不高。

2019年PCB市场中鹏鼎(中国)、旗胜(日本)、迅达(美国)以6%、5%、4%市占率。

主板要求在有限的空间上承载更多的元器件,进一步缩小线宽线距,普通多层板和HDI已经难以满足需求,由更小的高阶HDI并联起来分散主板功能,使结构设计更加紧凑。

PCB主要应用领域


PCB板的应用覆盖范围十分广泛,下游应用比较广泛,其中通信、汽车电子和消费电子三大领域占比合计60%,5G基站的建设加速将拉动PCB产业链的快速发展。

汽车电子

汽车用PCB要求工作温度符合-40°C~85°C,PCB一般选用FR-4(耐燃材料等级,主要为玻璃布基板),厚度在1.0~1.6mm。

根据中国产业发展研究网的数据,目前中轿车中汽车电子成本占比达到28%,混合动力车为47%,纯电动车高达65%。


消费电子

随着智能手机、平板电脑、VR/AR以及可穿戴设备等频频成为消费电子行业热点,创新型消费电子产品层出不穷,并将渗透消费者生活的方方面面。这也为消费电子PCB的发展带来了契机。

2019年手机及消费电子占PCB下游应用的比例分别为37%。移动终端的PCB需求则主要集中于HDI、挠性板和封装基板。

据Prismark统计,移动终端的PCB需求主要以HDI及挠性板为主,其中HDI板占比约为50.68%,并有26.36%的封装基板需求。

服务器

服务器平台升级将带动整个服务器行业进入上行周期,而PCB以及其关键原材料CCL作为承载服务器内各种走线的关键基材,除了服务器周期带来的量增逻辑,同时还存在服务器平台升级带来的价增逻辑。

可以说,在服务器面临升级、市场即将扩容的情况下,PCB和CCL将因为服务器升级迎来量价齐升的增长机会。

2019年个人电脑的PCB需求主要集中于挠性板和封装基板,合计占比达48.17%;服务/存储的PCB需求以6-16层板和封装基板为主。

PCB在服务器中的应用主要包括背板、高层数线卡、HDI卡、GF卡等,其特点主要体现在高层数、高纵横比、高密度及高传输速率。服务器市场的发展也将推动PCB市场特别是PCB市场的发展。

通信领域PCB

在通信领域,根据不同的PCB特性,可以应用于不同功能的通信设备上。对于大尺寸多层、高频材料可以应用于无线网及传输网中。相比而言,多层板、刚挠结合的PCB元件可用于数据通信网及固网宽带等环节。

根据券商的相关测算,单个5G基站对PCB的使用量约为3.21㎡,是4G基站用量的1.76倍,同时由于5G通信的频率更高,对于PCB的性能需求更大,因此5G基站用PCB的单价要4G基站用PCB,由于5G的频谱更高,带来基站的覆盖范围更小,根据测算国内5G基站将是4G基站的1.2-1.5倍,同时还要配套更多的小基站,因此5G所带来的基站总数量将要比4G多出不少。

此外,5G基站功能增多,PCB上元件的集成密度明显提升,电路板的设计难度也随之提高。高频高速材料的使用和制造难度的提升将显著提升PCB单价。

PCB发展趋势图片
PCB的高频多层化:为了扩大通讯通道,以适应数字时代对信息量与速度传播需求的提升,电子通讯设备的使用频率逐步向高频领域转移。

这就要求PCB基板材料应具有低介电常数与低介电损耗角正切值,只有这样才能获得高传播信号速度,并减少信号传播过程中的损失。除此之外,PCB工艺也随着电子信息技术的发展而向多层化、微线宽、微间距多盲孔等方向发展。

高层化PCB将显著缩小密集复杂的线路连接空间,达到集成化的效果。多层板在电子产品设计上得到普遍的认可并得到深入的技术研发。常见的多层板以四层PCB为主,现在六、八、十层板也逐渐得到普及。


PCB品质的提升推动上游CCL、FR-4基板的产业升级

随着PCB工业规模的扩大核心技术的创新,行业的竞争也不断加剧,厂家开始更为重视PCB产品的品质,因此对PCB品质的管控也愈加严格。

为了适应PCB向精细线路、高频多层方向发展,其上游的CCL材料由单一型过渡到系列化,覆铜板的新材料、新工艺、新技术的运用与研发成为必然趋势。

与此相对应,FR-4型产品的性能也逐渐提升,FR-4型覆铜板的某些性能已不能完全满足PCB的制作要求,FR-4逐步走向高耐燃性、高尺寸稳定性、低介电常数和环保性。


CB国产化进程加速

中国PCB企业依靠成本优势、产能扩张和下游本土品牌的崛起,拉动PCB国产化进程。随着行业的发展,中国PCB内资企业通过自身发展或合资建厂,逐渐积累自身资本、人才和技术资源,构建自身产业护城河,不断发展壮大。

在技术上,不断加大研发投入,积累中PCB技术;在产能上,不断投资建厂,形成规模优势;在产业链上,逐步完善上游原材料渠道和应用市场,形成完备的上下游产业链体系。

中国正式实现PCB贸易从逆差到顺差的转变,标志着中国PCB正进行结构性转变,生产技术不断发展,初步实现进口替代的目标。

FPC柔性电路有哪些主要材料?

在柔性电路中使用的主要材料是绝缘簿膜、胶黏剂和导线。绝缘簿膜形成了电路的基础。胶黏剂将铜箔黏接到绝缘簿膜上,在多层结构设计中,内部有许多层被黏合在了一起。使用外保护层将电与砂尘和潮气相隔绝,与此同时还可以降低在挠曲时所受的应力。导电层是由铜箔提供的。

在一些柔性电路中,采用铝或者不锈钢作为加强肋,以确保几何尺寸的稳定性。同时还可以提供在元器件和连接器插入时的机械支撑力,以及消除掉应力。加强肋采用胶黏剂黏接在柔性电路上面。

有时在柔性电路中采用的另外一种材料是黏接片(bond ply),它是由两面涂覆有胶黏剂的绝缘簿膜构成。黏接片能够提供环境保护和电气绝缘,它能够起到取消簿膜层和在层数较少的多层电路中起到黏接的作用。

许多绝缘簿膜可以从市场上采购到,常用的是聚酰亚胺和涤纶材料(如表1所示)。在美国的所有柔性电路制造厂商中,接近80%的厂商是采用聚酰亚胺簿膜作为柔性电路的材料,大约20%的制造厂商结合采用涤纶簿膜。

聚酰亚胺材料具有不易燃、几何尺寸稳定的特点,拥有较高的抗撕裂强度,并且能够忍受焊接时的高温。涤纶也称为聚对苯二甲酸乙二醇脂(polyethylene terephthalate 简称PET),物理性能与聚酰亚胺相类似,具有较低的介电常数和能够吸附少量的潮气,但是耐高温的能力较差。

涤纶的熔化点在250℃,它的玻璃化转变温度(Tg)为80℃,这些参数限制了它们在需要进行大量焊接的场合的使用。在低温状态下,它们较硬,但是它们仍适用于在电话以及其他不暴露在恶劣环境下工作的电子产品中使用。

聚酰亚胺绝缘簿膜通常与聚酰亚胺或者丙烯酸胶黏剂一起使用,绦纶绝缘簿膜一般与绦纶胶黏剂一起使用。在焊接或者在整个多层层压周期操作以后,黏接好的材料具有令人满意的特性优点,即稳定的几何尺寸。在胶黏剂中的其他重要特性是较低的介电常数、较高的绝缘阻抗、较高的玻璃化转变温度和较低的吸湿性。

在柔性电路中除了采用绝缘簿膜与导电材料相互黏接以外,胶黏剂也被用作防护涂覆来使用,它可以形成覆盖层(也称为coverlays)和表面涂层。这两者之间的主要差异在于所采用的应用方式不同。覆盖层是将胶黏剂覆盖在层压有电路的绝缘簿膜上面,而表面涂层是通过表面印刷的方式涂布胶黏剂。

不是所有的层压结构都要与胶黏剂相接合,不采用胶黏剂的层压结构与采用胶黏剂的层压结构相比较,能够提供更簿的电路、更佳的柔软性和更好的导热率。簿型结构的导热率和不采用耐热胶黏剂的结构,允许不采用胶黏剂的电路在不宜采用胶黏剂为基础的层压簿片的工作场合中使用。

在柔性电路中所使用的铜箔可以采用电沉积或者采用锻制的方式获得。采用电沉积制造的箔片一面是有光泽的,而另外一面是没有光泽的,它形成了可以弯曲的材料,可以形成不同的厚度尺寸和宽度尺寸。

由电沉积制成的箔片的无光泽一面常常需要采用特殊处理,以求改善其黏接性能。采用锻制方式形成的铜箔除了可以弯曲以外,具有一定的硬度和表面光滑度,可以适应要求动态柔性活动的场合使用。

如何为柔性线路板(FPC板)选用保护膜?

柔性线路板FPC板上用什么保护膜来保护呢?既要防尘防污防静电,又要有效贴合板面,防静电PET保护膜合适。



  柔性电路板保护膜



  柔性电路板又称“软板”,即FPC板。是用柔性的绝缘基材制成的印刷电路。柔性电路提供优良的电性能,能满足更小型和更高密度安装的设计需要,也有助于减少组装工序和增强可靠性。柔性电路板是满足电子产品小型化和移动要求的惟一解决方法。可以自由弯曲、卷绕、折叠,可以承受数百万次的动态弯曲而不损坏导线,可依照空间布局要求任意安排,并在三维空间任意移动和伸缩,从而达到元器件装配和导线连接的一体化;柔性电路板可大大缩小电子产品的体积和重量,适用电子产品向高密度、小型化、高可靠方向发展的需要。



  因此,FPC板在航天、军事、移动通讯、手提电脑、计算机外设、PDA、数字相机等领域或产品上得到了广泛的应用。



  但是FPC板在生产过程中很容易出现静电击穿现象。目前解决这一问题主要依靠市面上防静电台垫,而该产品靠静电剂内添并迁移到台垫表面,然后吸收空气水分子形成导电通路,从而对FPC板有防静电效果,同时该产品易受空气、湿度等环境因素影响,静电排放效果差。尤其在北方气候干燥地区,表面电阻值升高,随着时间推移,防静电指标衰减越来越快,造成静电排放不稳定,这样容易击穿FPC板上线路芯片,造成设备运行损坏。同时,该产品又不能随同FPC板搬运,不能起到随时防护作用。在应用环节上缺陷已十分明显,已不能满足目前FPC板发展技术的要求。



  现FPC板正处于规模小但迅猛发展之中。聚合物厚膜法是一种、低成本的生产工艺。该工艺在廉价的柔性基材上,选择性地网印导电聚合物油墨。其代表性的柔性基材为PET。聚合物厚膜法导体包括丝印金属填料或碳粉填料。聚合物厚膜法本身很清洁,使用无铅的SMT胶黏剂,不必蚀刻。因其使用加成工艺且基材成本低,聚合物厚膜法电路是铜聚酰亚胺薄膜电路价格的1/10;是刚性电路板价格的1/2~1/3。聚合物厚膜法尤其适用于设备的控制面板。在移动电话和其他的便携产品上,聚合物厚膜法适合将印制电路主板上的元件、开关和照明器件转变成聚合物厚膜法电路。既节省成本,又减少能源消耗。



  防静电PET保护膜应用在“柔性线路板”上市场前景十分广阔,性能:透明防静电PET保护膜比较柔软,与FPC板硬度差不多,并且透明到可以观察到FPC表面工艺要求,而且又不与外界空气接触,当然也不会产生静电及粉尘。由于防静电保护膜两边都有防静电涂层,因此在与FPC板分离时又不会产生静电,当然也不会击穿FPC板上线路的芯片。这既解决了FPC板运输途中静电产生,同时又能进行粘合并且透明又不受空气、湿度等环境因素的影响。产品可广泛应用于半导体工业、LCD工业、电子装备及微电子设备业、电子电气、通讯制造、精密仪器、光学制造、医药工业及生物工程等行业工业领域以及高铁车厢、医院、家庭、办公领域,用于工业生产车间、试验室、机房,以及医院手术室、CT、X射线室、CCU、ICU病房等的地板、工作台面、墙面板等。

FPC柔性线路板常见的一些工艺知识

1、FPC是柔性的线路板可以折叠弯曲,一般用做翻盖手机的上下部分连接、电池的保护电路等。

为了FPC的平整度生产厂家出货之般会对FPC进行压平处理,并且由于FPC是柔性的所以很难采用抽真空包装。所以在传递和使用过程种注意FPC的平整度尽量不要折弯。

2、FPC一般为1~2层,多层的FPC比较少见。FPC的基材和Cover Layer一般采用聚酰亚胺,基材和铜箔之间压和成一体。有些FPC的厚度以铜箔的厚度标识如1.5OZ,2.0OZ。

与PCB不同的是Cover Layer在铜箔上的开口一般小于铜箔面积而PCB上Solder Mask面积一般大于铜箔的面积。需要注意的一点就是FPC基材和铜箔之间靠树脂粘和,有些情况下树脂会溢出造成焊盘污染导致漏焊。

3、FPC的废边(Waste Area,没有电路的边缘部分)部分一般采用2种工艺。一种叫Solid Copper,既采用整体的铜箔覆盖。

另一种叫Cross Hatching。Solder Copper工艺的FPC柔性相对较小,如果不折弯比较平整但是折弯后不容易恢复。Cross Hatching工艺的FPC与其相反。

4、FPC在整个SMT过程种均需要使用支撑,通常所选用的支撑未耐热防静电的合成材料制成,也有公司使用薄铝板进行支撑。常用的定位的方式为采用高温胶带将FPC粘在支撑板上。

不过需要注意的是胶带的位置尽量在FPC的四个角和比较长的边中间位置,这可以防止FPC翘起。还有胶带厚度会对锡膏印刷产生一定的影响,所以胶带的位置不要贴在元件密集的位置边缘及有细管脚的元件周围,更注意不要贴在焊盘上。

5、因为FPC的平整度和PCB相比比较差并且还存在支撑、胶带等多种因素的影响所以FPC在印刷的过程种很难和网板完全贴,这就会造成锡膏量的控制上存在问题。

对网板开口有两点建议:一是网板对于密管脚的IC元件尽量的将网孔变窄拉长并且网板尽可能的薄,实践证明颠倒梯形的网孔对印刷比较有利。另一条是对于跨度比较大的片式元件或连接件尽量加大网孔避免因为FPC不平造成漏焊。

6、因为FPC需要支撑所以在回流焊接时回流炉的Profile设定一定要考虑支撑板对热量的吸收,一般燠热区建议回流炉下面的温度设定比上面高一部分以支撑板的温度和FPC相近避免冷焊,再有就是出口的冷却风要强支撑板温度降到安全温度,还可以在路子出口增加冷却风扇。

7、为了方便分割,FPC与边缘之间一般沿轮廓预先切开,未切开的部分一般保留一层基材(Micro Joint)并需要在上面打邮票孔,邮票孔不但可以方便分割还可以防止在分割点处产生大的毛刺。

连接部分还能FPC在SMT的过程种不翘起,所以Micro Joint因该在FPC内每个切口处保留。FPC的切割可以选择手工分割或使用类似于冲床的模具分割。

留言板

  • PCB多层线路板
  • 价格商品详情商品参数其它
  • 提交留言即代表同意更多商家联系我

详细资料

主营行业:PCB电路板
公司主营:pcb电路板,pcb多层板,hdi线路板,pcb快板
采购产品:电路板
主营地区:深圳
企业类型:私营有限责任公司
注册资金:人民币1000万
公司成立时间:2011-07-26
员工人数:301 - 500 人
研发部门人数:11 - 50 人
经营模式:生产型
经营期限:2011-01-01 至 2052-01-01
最近年检时间:2022年
登记机关:深圳市市场监督管理局
经营范围:电子元器件,电子产品及PCB电路板的销售;国内贸易、货物及技术进出口。(法律、行政法规、国务院决定规定在登记前须经批准的项目除外;涉及行政许可的,须取得行政许可文件后方可经营)^电子产品及电路板的研发,电路板的生产。
厂房面积:12000平方米
月产量:20000平方米
是否提供OEM:
质量控制:内部
公司邮编:518000
公司电话:0755-27055569
小提示:光模块pcb描述文字和图片由用户自行上传发布,其真实性、合法性由发布人负责。
陈生: 18938919530
在线联系: 1036958619
让卖家联系我