关键词 |
PRX可控硅 |
面向地区 |
全国 |
封装外形 |
平板形 |
极数 |
三极 |
晶闸管的工作原理:
1、晶闸管具有单向导电性:正向导通条件:A、K间加正向电压,G、K间加触发信号;
2、晶闸管一旦导通,控制失去作用:若使其关断,降低UAK或加大回路电阻,把阳电流减小到维持电流以下;
晶闸管的结构:晶闸管由四层半导体材料构成,它有三个:阳,阴和门。晶闸管是在晶体管基础上发展起来的一种大功率半导体器件,在电路中用文字符号为“V”、“VT”表示(旧标准中用字母“SCR”表示)。
晶闸管导通的条件:
1、晶闸管阳与阴间接正向电压;
2、控制与阴之间也接正向电压(实际工作中,控制加正触发脉冲信号);
晶闸管导通后,控制便失去作用。依靠正反馈,晶闸管仍可维持导通状态。
关断晶闸管的方法:将阳电压降低到足够小或加瞬间方向阳电压、将阳瞬间开路。
晶闸管的过电流保护:
1、过电流:当流过晶闸管的电流有效值超过它的额定通态平 均电流的有效值时,称为过电流;
2、原因:负载过重,输出回路短路等;
3、过电流保护:当发生过电流时,能迅速将电流切断,以防晶闸管损坏;
4、措施:灵敏过电流继电器保护、快速熔断器保护等;
5、快速熔断器 。
可控硅是可控硅整流元件的简称,是一种具有三个PN结的四层结构的大功率半导体器件,一般由两晶闸管反向连接而成。它的功能不仅是整流,还可以用作无触点开关的快速接通或切断;实现将直流电变流电的逆变;将一种频率的交流电变成另一种频率的交流电等等。可控硅和其它半导体器件一样,有体积小、、稳定性好、工作可靠等优点。它的出现,使半导体技术从弱电领域进入了强电领域,成为工业、农业、交通运输、科研以至商业、民用电器等方面争相采用的元件。目前可控硅在自动控制、机电应用、工业电气及家电等方面都有广泛的应用。
可控硅从外形上区分主要有螺旋式、平板式底式三种。螺旋式应用较多。
可控硅有三个----阳(A)、阴(C)和控制(G),管芯是P型导体和N型导体交迭组成的四层结构,共有三个PN结,与只有一个PN结的硅整流二管在结构上迥然不同。可控硅的四层结构和控制的引入,为其发挥“以小控大”的控制特性奠定了基础。可控硅应用时,只要在控制加上很小的电流或电压,能控制很大的阳电流或电压。目前已能制造出电流容量达几百安培以至上千安培的可控硅元件。一般把5安培以下的可控硅叫小功率可控硅,50安培以上的可控硅叫大功率可控硅。
我们可以把从阴向上数的、二、三层看面是一只N管,而二、三、四层组成另一只PNP型晶体管。其中第二、第三层为两管交迭共用。可画出图1的等效电路图。当在阳和阴之间加上一个正向电压E,又在控制G和阴C之间(相当BG2的基一射间)输入一个正的触发信号,BG2将产生基电流Ib2,经放大,BG2将有一个放大了β2倍的集电电流IC2。因为BG2集电与BG1基相连,IC2又是BG1的基电流Ib1。BG1又把Ib1(Ib2)放大了β1的集电电流IC1送回BG2的基放大。如此循环放大,直到BG1、BG2完全导通。事实上这一过程是“一触即发”的,对可控硅来说,触发信号加到控制,可控硅立即导通。导通的时间主要决定于可控硅的性能。
可控硅一经触发导通后,由于循环反馈的原因,流入BG2基的电流已不只是初始的Ib2,而是经过BG1、BG2放大后的电流(β1*β2*Ib2),这一电流远大于Ib2,足以保持BG2的持续导通。此时触发信号即使消失,可控硅仍保持导通状态,只有断开电源E或降低E的输出电压,使BG1、BG2的集电电流小于维持导通的小值时,可控硅方可关断。当然,如果E性反接,BG1、BG2受到反向电压作用将处于截止状态。这时,即使输入触发信号,可控硅也不能工作。反过来,E接成正向,而触动发信号是负的,可控硅也不能导通。另外,如果不加触发信号,而正电压大到超过一定值时,可控硅也会导通,但已属于非正常工作情况了。
可控硅这种通过触发信号(小触发电流)来控制导通(可控硅中通过大电流)的可控特性,正是它区别于普通硅整流二管的重要特征。
全国PRX可控硅热销信息